Search results for "Renewal theory"
showing 3 items of 3 documents
Strongly super-Poisson statistics replaced by a wide-pulse Poisson process: The billiard random generator
2021
Abstract In this paper we present a study on random processes consisting of delta pulses characterized by strongly super-Poisson statistics and calculate its spectral density. We suggest a method for replacing a strongly super-Poisson process with a wide-pulse Poisson process, while demonstrating that these two processes can be set in such a way to have similar spectral densities, the same mean values, and the same correlation times. We also present a billiard system that can be used to generate random pulse noise of arbitrary statistical properties. The particle dynamics is considered in terms of delta and wide pulses simultaneously. The results of numerical experiments with the billiard s…
Variable Length Memory Chains: Characterization of stationary probability measures
2021
Variable Length Memory Chains (VLMC), which are generalizations of finite order Markov chains, turn out to be an essential tool to modelize random sequences in many domains, as well as an interesting object in contemporary probability theory. The question of the existence of stationary probability measures leads us to introduce a key combinatorial structure for words produced by a VLMC: the Longest Internal Suffix. This notion allows us to state a necessary and sufficient condition for a general VLMC to admit a unique invariant probability measure. This condition turns out to get a much simpler form for a subclass of VLMC: the stable VLMC. This natural subclass, unlike the general case, enj…
Stability in a System subject to Noise with Regulated Periodicity
2011
The stability of a simple dynamical system subject to multiplicative one-side pulse noise with hidden periodicity is investigated both analytically and numerically. The stability analysis is based on the exact result for the characteristic functional of the renewal pulse process. The influence of the memory effects on the stability condition is analyzed for two cases: (i) the dead-time-distorted poissonian process, and (ii) the renewal process with Pareto distribution. We show that, for fixed noise intensity, the system can be stable when the noise is characterized by high periodicity and unstable at low periodicity.